Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao - Bài 40. Tìm các nghiệm của mỗi phương t... DeHocTot.com

Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 40. Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho (khi cần tính gần đúng thì tính chính xác đến \({1 \over {10}}\) giây)

a.  \(2{\sin ^2}x - 3\cos x = 2,0^\circ \le x \le 360^\circ \)

b.  \(\tan x + 2\cot x = 3,180^\circ \le x \le 360^\circ \)

Giải

a.

\(\eqalign{
& 2{\sin ^2}x - 3\cos x = 2 \Leftrightarrow 2{\cos ^2}x + 3\cos x = 0 \cr
& \Leftrightarrow \cos x = 0\,\left( {\text{ loại }\,\cos x = - {3 \over 2}} \right) \cr
& \Leftrightarrow x = 90^\circ + k180^\circ ,\,k \in \mathbb Z \cr} \) 

Vậy với điều kiện \(0^0≤ x ≤ 360^0\), phương trình có hai nghiệm là \(x = 90^0\) và \(x = 270^0\).

b. ĐKXĐ : \(\sin x ≠ 0\) và \(\cos x ≠ 0\). Ta có :

\(\tan x + 2\cot x = 3 \Leftrightarrow {\tan ^2}x - 3\tan x + 2 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = 2} \cr} } \right.\) 

+) \( \tan x = 1 ⇔ x = 45^0 + k180^0\). Có một nghiệm thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), ứng với \(k = 1\) là \(x = 225^0\)

+) \( \tan x = 2 ⇔ x = α + k180^0\) với \(\tan α = 2\). Ta có thể chọn \(\alpha  \approx {63^0}265,8\)

Vậy có một nghiệm (gần đúng) thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\) là :

\(x = \alpha  + {180^0} \approx {243^0}265,8\)

Kết luận : Với điều kiện \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), phương trình có hai nghiệm \(x = 225^0\) và \(x \approx {243^0}265,8\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay