Câu 43 trang 122 SGK Đại số và Giải tích 11 Nâng cao - Bài 43. Cho dãy số (un) xác định bởiU1 =... DeHocTot.com

Câu 43 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 43. Cho dãy số (un) xác định bởi

U1 = 1 và un + 1 = 5un + 8 với mọi n ≥ 1.

a. Chứng minh rằng dãy số (vn), với vn = un + 2, là một cấp số nhân. Hãy tìm số hạng tổng quát của cấp số nhân đó.

b. Dựa vào kết quả phần a, hãy tìm số hạng tổng quát của dãy số (un).

Giải:

a. Từ hệ thức xác định dãy số (un), suy ra với mọi n ≥ 1, ta có :

\({u_{n + 1}} + 2 = 5\left( {{u_n} + 2} \right)\,hay \,\,{v_{n + 1}} = 5{u_n}\)

Do đó (vn) là một cấp số nhân với số hạng đầu \({v_1} = {\rm{ }}{u_1} + {\rm{ }}2{\rm{ }} = {\rm{ }}3\) và công bội q = 5.

Số hạng tổng quát : \({v_n} = {\rm{ }}{3.5^{n{\rm{ }}-{\rm{ }}1}}\)

b. \({u_n} = {v_n} - 2 = {3.5^{n - 1}} - 2\) với mọi \(n ≥ 1\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay