Câu 5 trang 9 SGK Hình học 11 Nâng cao - Bài 5. Trong mặt phẳng tọa độ Oxy , vớ... DeHocTot.com

Câu 5 trang 9 SGK Hình học 11 Nâng cao

Toán nâng cao


Bài 5. Trong mặt phẳng tọa độ Oxy , với \(\alpha ,a,b\)là những số cho trước, xét phép biến hình F biến mỗi điểm \(M\left( {x;y} \right)\) thành điểm \(M'\left( {x';y'} \right)\), trong đó

\(\left\{ {\matrix{{x' = x\cos \alpha - y\sin \alpha + a} \cr {y' = x\sin \alpha + y\cos \alpha + b} \cr} } \right.\)

a. Cho hai điểm \(M\left( {{x_1};{y_1}} \right),\,N\left( {{x_2};{y_2}} \right)\) và gọi M', N' lần lượt là ảnh của M,N qua phép F. Hãy tìm tọa độ của M' và N'

b. Tính khoảng cách d giữa M và N; khoảng cách d' giữa M' và N'

c. Phép F có phải là phép dời hình hay không ?

d. Khi \(\alpha = 0\), chứng tỏ rằng F là phép tịnh tiến

Giải 

a) M’ có tọa độ \({(x_1},{\rm{ }}y{_1})\) với \(\left\{ {\matrix{{x{'_1} = {x_1}\cos \alpha - {y_1}\sin \alpha + a} \cr {y{'_1} = {x_1}\sin \alpha + {y_1}\cos \alpha + b} \cr} } \right.\)

N’ có tọa độ \({(x_2},{\rm{ }}y{_2})\) với \(\left\{ {\matrix{{x{'_2} = {x_2}\cos \alpha - {y_2}\sin \alpha + a} \cr {y{'_2} = {x_2}\sin \alpha + {y_2}\cos \alpha + b} \cr} } \right.\)

b) Ta có \(d=MN=\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \)

\(\eqalign{
& d' = M'N' = \sqrt {{{\left( {x{'_1} - x{'_2}} \right)}^2} + {{\left( {y{'_1} - y{'_2}} \right)}^2}} \cr
& = \sqrt {{{\left[ {\left( {{x_1} - {x_2}} \right)\cos \alpha - \left( {{y_1} - {y_2}} \right)\sin \alpha } \right]}^2} + {{\left[ {\left( {{x_1} - {x_2}} \right)\sin \alpha + \left( {{y_1} - {y_2}} \right)\cos \alpha } \right]}^2}} \cr
& = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}{{\cos }^2}\alpha + {{\left( {{y_1} - {y_2}} \right)}^2}{{\sin }^2}\alpha + {{\left( {{x_1} - {x_2}} \right)}^2}{{\sin }^2}\alpha + {{\left( {{y_1} - {y_2}} \right)}^2}{{\cos }^2}\alpha } \cr
& = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \cr} \)

c) Từ câu b suy ra \(MN=M'N'\) do đó \(F\) là phép dời hình.

d) 

\(Khi\,\,\alpha = 0,\,\,\text{ ta có }\,\,\left\{ \matrix{
x' = x + a \hfill \cr
y' = y + b \hfill \cr} \right.\)

Vậy \(F\) là phép tịnh tiến vectơ \(\overrightarrow u \left( {a;b} \right).\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay