Câu 6 trang 120 SGK Hình học 11 Nâng cao - Cho hình lăng trụ đứng ABC.A’B’C’ có... DeHocTot.com

Câu 6 trang 120 SGK Hình học 11 Nâng cao

Toán nâng cao


Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại đỉnh C, CA = a, CB = b ; mặt bên ABB’A’ là hình vuông. Gọi P là mặt phẳng đi qua C và vuông góc với AB’.

a. Xác định thiết diện của hình lăng trụ đã cho khi cắt bởi (P). Thiết diện là hình gì ?

b. Tính diện tích thiết diện nói trên.

Giải

a. Kẻ đường cao CH của tam giác vuông ABC thì CH ⊥ AB’ (định lí ba đường vuông góc).

Trong mp(ABB’A’) kẻ đường thẳng Ht vuông góc với AB’. Khi đó (P) chính là mp(CHt).

Chú ý rằng do ABB’A’ là hình vuông nên AB’ ⊥ A’B. Vậy Ht // A’B, từ đó Ht cắt AA’ tại điểm K thuộc đoạn AA’.

Như vậy, thiết diện của hình lăng trụ ABC.A’B’C’ khi cắt bởi mp(P) là tam giác CHK.

Do CH ⊥ AB, mp(ABB’A’) ⊥ mp(ABC) nên CH ⊥ (ABB’A’), từ đó tam giác CHK vuông tại H.

b.

\(\eqalign{  & {S_{CHK}} = {1 \over 2}CH.HK  \cr  & CH.AB = CA.CB \Rightarrow CH = {{ab} \over {\sqrt {{a^2} + {b^2}} }}  \cr  & AH.AB = {a^2} \Rightarrow AH = {{{a^2}} \over {AB}}  \cr  & {{HK} \over {A'B}} = {{AH} \over {AB}}\cr& \Rightarrow HK = A'B.{{{a^2}} \over {A{B^2}}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;= {{\sqrt {{a^2} + {b^2}} .\sqrt 2 {a^2}} \over {{a^2} + {b^2}}} = {{{a^2}\sqrt 2 } \over {\sqrt {{a^2} + {b^2}} }} \cr} \) 

Từ đó \({S_{CHK}} = {1 \over 2}{{ab} \over {\sqrt {{a^2} + {b^2}} }}.{{{a^2}\sqrt 2 } \over {\sqrt {{a^2} + {b^2}} }}\)

Tức là \({S_{CHK}} = {{{a^3}b\sqrt 2 } \over {2\left( {{a^2} + {b^2}} \right)}}\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay