Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao - Bài 7. Cho số thực \(x > -1\). Chứng min... DeHocTot.com

Câu 7 trang 100 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 7. Cho số thực \(x > -1\). Chứng minh rằng :

\({\left( {1 + x} \right)^n} \ge 1 + nx\)   (1)

Với mọi số nguyên dương n.

Giải

+) Với \(n = 1\), ta có  \({\left( {1 + x} \right)^1} = 1 + x = 1 + 1.x\)

Như vậy, ta có (1) đúng khi \(n = 1\)

+) Giả sử đã có (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là: 

\({\left( {1 + x} \right)^k} \ge 1 + kx\)  

+) Ta sẽ chứng minh nó cũng đúng khi \(n = k + 1\).

Thật vậy, từ giả thiết \(x > -1\) nên \((1+x)>0\)

 Theo giả thiết qui nạp, ta có : \({\left( {1 + x} \right)^k} \ge 1 + kx\)   (2)

Nhân hai vế của (2) với \((1+x)\) ta được:

\(\eqalign{
& {\left( {1 + x} \right)^{k + 1}} \ge \left( {1 + x} \right)\left( {1 + kx} \right) \cr
& = 1 + \left( {k + 1} \right)x + k{x^2} \ge 1 + \left( {k + 1} \right)x \cr} \)

Từ các chứng minh trên suy ra (1) đúng với mọi \(n \in \mathbb N^*\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay