Câu 8 trang 13 SGK Hình học 11 Nâng cao - Bài 8. Trong mặt phẳng tọa độ Oxy, cho c... DeHocTot.com

Câu 8 trang 13 SGK Hình học 11 Nâng cao

Toán nâng cao


Bài 8. Trong mặt phẳng tọa độ Oxy, cho các đường tròn (C1)(C2) lần lượt có phương trình:

\(\eqalign{
& \left( {{C_1}} \right):{x^2} + {y^2} - 4x + 5y + 1 = 0 \cr
& \left( {{C_2}} \right):{x^2} + {y^2} + 10y - 5 = 0 \cr} \)

Viết phương trình ảnh của mỗi đường tròn trên qua phép đối xứng có trục Oy

Giải 

Ta có:

\(\eqalign{
& {x^2} + {y^2} - 4x + 5y + 1 = 0 \cr
& \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + {5 \over 2}} \right)^2} = {{37} \over 4} \cr} \)

\((C_1)\) có tâm \({I_1}\left( {2; - {5 \over 2}} \right)\) và bán kính \({R_1} = {{\sqrt {37} } \over 2}\)

Gọi \(I'_1\) là ảnh của \(I_1\) qua phép đối xứng có trục Oy thì \(I{'_1}\left( { - 2; - {5 \over 2}} \right)\)

Vậy phương trình ảnh \((C'_1)\) của \((C_1)\) qua phép đối xứng trục Oy là:

\(\eqalign{
& {\left( {x + 2} \right)^2} + \left( {y + {5 \over 2}} \right) = {{37} \over 4} \cr
& \Leftrightarrow {x^2} + {y^2} + 4x + 5y + 1 = 0 \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay