Câu 9 trang 105 SGK Đại số và Giải tích 11 Nâng cao - Bài 9. Tìm 5 số hạng đầu của mỗi dãy... DeHocTot.com

Câu 9 trang 105 SGK Đại số và Giải tích 11 Nâng cao

Toán nâng cao


Bài 9. Tìm 5 số hạng đầu của mỗi dãy số sau :

a. Dãy số (un) với  \({u_n} = {{2{n^2} - 3} \over n}\)

b. Dãy số (un) với  \({u_n} = {\sin ^2}{{n\pi } \over 4} + \cos {{2n\pi } \over 3}\)

c. Dãy số (un) với  \({u_n} = {\left( { - 1} \right)^n}.\sqrt {{4^n}} \)

Giải

a. Ta có

\(\eqalign{
& {u_1} = {{{{2.1}^2} - 3} \over 1} = - 1 \cr
& {u_2} = {{{{2.2}^2} - 3} \over 2} = {5 \over 2} \cr
& {u_3} = {{{{2.3}^2} - 3} \over 3} = 5 \cr
& {u_4} = {{{{2.4}^2} - 3} \over 4} = {{29} \over 4} \cr
& {u_5} = {{{{2.5}^2} - 3} \over 5} = {{47} \over 5} \cr} \)

b.

\(\eqalign{
& {u_1} = {\sin ^2}{\pi \over 4} + \cos {{2\pi } \over 3} = {1 \over 2} - {1 \over 2} = 0 \cr
& {u_2} = {\sin ^2}{\pi \over 2} + \cos {{4\pi } \over 3} = 1 - {1 \over 2} = {1 \over 2} \cr
& {u_3} = {\sin ^2}{{3\pi } \over 4} + \cos 2\pi = {1 \over 2} + 1 = {3 \over 2} \cr
& {u_4} = {\sin ^2}\pi + \cos {{8\pi } \over 3} = \cos \left( {2\pi + {{2\pi } \over 3}} \right) = - {1 \over 2} \cr
& {u_5} = {\sin ^2}{{5\pi } \over 4} + \cos {{10\pi } \over 3} = {1 \over 2} - {1 \over 2} = 0 \cr} \)

c.

\(\eqalign{
& {u_1} = - 2 \cr
& {u_2} = 4 \cr
& {u_3} = - 8 \cr
& {u_4} = 16 \cr
& {u_5} = - 32 \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay