Bài 14 trang 7 Sách bài tập Hình học lớp 12 Nâng cao - Cho tứ diện đều ABCD và phép dời hình ... DeHocTot.com

Bài 14 trang 7 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Cho tứ diện đều ABCD và phép dời hình f biến ABCD thành chính nó, nghĩa là biến mỗi đỉnh của tứ diện thành một đỉnh của tứ diện. Tìm tập hợp các điểm M trong không gian sao cho \(M = f\left( M \right)\) trong các trường hợp sau đây:

\(\eqalign{  & a)f\left( A \right) = B,f\left( B \right) = C,f\left( C \right) = A;  \cr  & b)f\left( A \right) = B,f\left( B \right) = A,f\left( C \right) = D;  \cr  & c)f\left( A \right) = B,f\left( B \right) = C,f\left( C \right) = D. \cr} \)

Giải

Theo giả thiết \(f\left( A \right) = B\) và \(f\left( B \right) = C,f\left( C \right) = A.\) Bởi vậy \(f\left( M \right) = M\) khi và chỉ khi \(MA = MB = MC.\) Suy ra tập hợp các điểm \(M\) là trục của đường tròn ngoại tiếp tam giác \(ABC\).

b) Theo giả thiết \(f\left( A \right) = B\), \(f\left( B \right) = C,f\left( C \right) = D\). Bởi vậy \(f\left( M \right) = M\) khi và chỉ khi \(MA = MB\) và \(MC = MD,\) tức là M đồng thời nằm trên hai mặt phẳng trung trực của ABCD. Suy ra tập hợp các điểm M là đường thẳng đi qua trung điểm của ABCD.

c) Theo giả thiết \(f\left( A \right) = B\),\(f\left( C \right) = B,f\left( C \right) = A\). Bởi vậy \(f\left( M \right) = M\) khi và chỉ khi  \(MA = MB = MC=MD\).

Suy ra tập hợp các điểm M gồm một điểm duy nhất là trọng tâm của tứ diện ABCD.

 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay