Bài 16 trang 8 Sách bài tập Hình học lớp 12 Nâng cao - Cho phép vị tự V tâm O tỉ số \(k \ne 1\)... DeHocTot.com

Bài 16 trang 8 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Cho phép vị tự V tâm O tỉ số \(k \ne 1\) và phép vị tự V tâm O tỉ số k. Chứng minh rằng nếu kk=1 thì hợp thành của VV là một phép tịnh tiến.

Giải

Với mỗi điểm M, ta lấy M1 sao cho \(\overrightarrow {O{M_1}}  = k\overrightarrow {OM} \)rồi lấy điểm M sao cho \(\overrightarrow {{O'}M'}  = {k'}\overrightarrow {{O'}{M_1}} \) thì hợp thành V V biến điểm M thành M.

Ta có:

\(\eqalign{  & \overrightarrow {M{M'}}  = \overrightarrow {M{M_1}}  + \overrightarrow {{M_1}{M'}} \cr& =\overrightarrow {O{M_1}}  - \overrightarrow {OM}  + \overrightarrow {{O'}{M'}}  - \overrightarrow {{O'}{M_1}}   \cr  &  = \overrightarrow {O{M_1}}  - {1 \over k}\overrightarrow {O{M_1}}  + {k'}\overrightarrow {{O'}{M_1}}  - \overrightarrow {{O'}{M_1}}   \cr  &  = \left( {1 - {1 \over k}} \right)\overrightarrow {O{M_1}}  + \left( {{k'} - 1} \right)\overrightarrow {{O'}{M_1}}   \cr  &  = \left( {1 - {1 \over k}} \right)\overrightarrow {O{M_1}}  + \left( {1 - {k'}} \right)\overrightarrow {{M_1}{O'}} . \cr} \)

Chú ý rằng vì kk=1 nên \({k'} = {1 \over k}\), bởi vậy đẳng thức trên trở thành :

\(\overrightarrow {M{M'}}  = \left( {1 - {1 \over k}} \right)\left( {\overrightarrow {O{M_1}}  + \overrightarrow {{M_1}{O'}} } \right) = {{k - 1} \over k}\overrightarrow {O{O'}} .\)

Từ đó suy ra hợp thành của VV là phép tịnh tiến theo vectơ \(\overrightarrow v  = {{k - 1} \over k}\overrightarrow {O{O'}} \).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay