Bài 25 trang 9 Sách bài tập Hình học lớp 12 Nâng cao - Cho khối lăng trụ đứng \(ABCD.{A_1}{B_1}{C... DeHocTot.com

Bài 25 trang 9 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Cho khối lăng trụ đứng \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có đáy hình bình hành và góc \(BAD = {45^0}\). Các đường chéo AC1DB1 lần lượt tạo với đáy những góc 450600. Hãy tính thể tích của khối lăng trụ nếu biết chiều cao của nó bằng 2.

Giải

(h.8)

Hình lăng trụ đã cho là hình lăng trụ đứng nên các cạnh bên vuông góc với đáy và độ dài cạnh bên bằng chiều cao của hình lăng trụ. Từ giả thiết ta suy ra :

Góc \({C_1}AC = {45^0}\),góc \({B_1}DB = {60^0}\).

Từ đó suy ra

\(AC = C{C_1} = 2,BD = 2\cot {60^0} = {2 \over {\sqrt 3 }}.\)

Áp dụng định lý hàm số côsin ta có :

\(\eqalign{  & B{D^2} = A{B^2} + A{D^2} - 2AB.AD.\cos {45^0},  \cr  & A{C^2} = D{C^2} + A{D^2} - 2DC.AD.\cos {135^0}, \cr} \)

Từ đó ta có:

\(\eqalign{  & B{D^2} - A{C^2} =  - AB.AD.\sqrt 2  + DC.AD.\left( { - \sqrt 2 } \right)\cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =  - 2\sqrt 2 AB.AD  \cr  &  \Rightarrow {4 \over 3} - 4 =  - 2\sqrt 2 AB.AD \cr&\Rightarrow AB.AD = {8 \over {3.2\sqrt 2 }} = {4 \over {3\sqrt 2 }}.  \cr  & {V_{ABCD.{A_1}{B_1}{C_1}{D_1}}} = AB.AD.\sin {45^0}{\rm{.A}}{{\rm{A}}_1} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;= {4 \over {3\sqrt 2 }}.{{\sqrt 2 } \over 2}.2 = {4 \over 3}. \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay