Bài 31 trang 10 Sách bài tập Hình học lớp 12 Nâng cao - Hãy tính thể tích của khối hộp nếu bi... DeHocTot.com

Bài 31 trang 10 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Hãy tính thể tích của khối hộp nếu biết độ dài cạnh bên bằng a, diện tích hai mặt chéo lần lượt là \({S_1},{S_2}\) và góc giữa hai mặt chéo bằng \(\alpha \).

Giải

(h.15) Giả sử hình hộp đã cho là \(ABCD.{A_1}{B_1}{C_1}{D_1}\).

Gọi \({\rm{O}}{{\rm{O}}_1}\) là giao tuyến của hai mặt chéo. Trong hai mặt chéo \(\left( {{A_1}{C_1}CA} \right)\) và \(\left( {{B_1}{D_1}DB} \right)\), qua điểm \(I \in O{O_1}\), ta lần lượt kẻ hai đường thẳng KEMH đều vuông góc với \(O{O_1}\). Khi đó \(\alpha  = \left( {MH,KE} \right)\) và MEHK là thiết diện thẳng khối hộp. Đặt \(KE = x,MH = y\) thì \({S_{MEHK}} = {1 \over 2}xy\sin \alpha .\)

Áp dụng kết quả bài tập 30, ta có:

Vhộp = \({S_{MKHE}}.A{A_1} = {1 \over 2}xya\sin \alpha .\)

Nhưng \(xa = {S_1},ya = {S_2}\) suy ra \(x = {{{S_1}} \over a},y = {{{S_2}} \over a} \Rightarrow xy = {{{S_1}{S_2}} \over {{a^2}}}.\)

Vậy Vhộp\( = {{{S_1}{S_2}\sin \alpha } \over {2a}}.\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay