Bài 34 trang 61 Sách bài tập Hình học lớp 12 Nâng cao - Cho hình nón N  có bán kính đáy R, đườ... DeHocTot.com

Bài 34 trang 61 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Cho hình nón N  có bán kính đáy R, đường cao SO. Gọi (P) là mặt phẳng vuông góc với SO tại O1 sao cho \(S{O_1} = {1 \over 3}SO.\) Một mặt phẳng qua trục hình nón cắt phần khối nón N  nằm giữa (P) và đáy hình nón theo thiết diện là hình tứ giác có hai đường chéo vuông góc.

Tính thể tích phần hình nón N nằm giữa mặt phẳng (P) và mặt phẳng chứa đáy hình nón N.

Giải

Gọi thiết diện thu được là \({\rm{A}}{{\rm{A}}_1}{B_1}B\).

Vì \(S{O_1} = {1 \over 3}SO\) nên

\({A_1}{B_1} = {1 \over 3}AB = {1 \over 3}.2R.\)

Mặt khác \(A{B_1} \bot {A_1}B\) tại I nên

\(IO = {1 \over 2}AB,I{O_1} = {1 \over 2}{A_1}{B_1}.\)

Vậy \(O{O_1} = R + {R \over 3} = {{4R} \over 3}.\)

Dễ thấy \(S{O_1} = {1 \over 2}O{O_1} = {{2R} \over 3}.\)

Từ đó \(SO = 2R.\)

Gọi thể tích phần hình nón phải tính là \(V^ * \) thì \(V^ *  = {V_1} - {V_2}\), trong đó :

V1 là thể tích của hình nón N.

V2 là thể tích hình nón đỉnh S và đáy là thiết diện của N. được cắt bởi (P).

Ta có thể tích phần hình nón phải tính là

\(\eqalign{  & V ^*  = {V_1} - {V_2} = {1 \over 3}\pi .O{B^2}.SO - {1 \over 3}\pi .{O_1}{B_1}^2.S{O_1}  \cr  &  = {1 \over 3}\pi ({R^2}.2R - {{{R^2}} \over 9}.{{2R} \over 3}) = {{52\pi {R^3}} \over {81}}. \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay