Bài 43 trang 125 Sách bài tập Hình học lớp 12 Nâng cao - Viết phương trình mặt phẳng trong mỗi t... DeHocTot.com

Bài 43 trang 125 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Viết phương trình mặt phẳng trong mỗi trường hợp sau:

a) Đi qua điểm M0(2;1;-1) và qua giao tuyến của hai mặt phẳng

x-y+z-4=0 và 3x-y+z-1=0.

b) Qua giao tuyến của hai mặt phẳng y+2z-4=0 và x+y-z+3=0, đồng thời song song với mặt phẳng x+y+z-2=0.

c) Qua giao tuyến của hai mặt phẳng 3x-y+z-2=0 và x+4y-5=0, đồng thời vuông góc với mặt phẳng 2x-z+7=0.

Giải

a) Gọi M(x;y;z) là điểm thuộc giao tuyến \(\Delta \) của hai mặt phẳng, khi đó tọa độ của điểm M là nghiệm của hệ:

\(\left\{ \matrix{  x - y + z = 4 \hfill \cr  3x - y + z = 1. \hfill \cr}  \right.\)

Đây là hệ ba ẩn có hai phương trình. Ta tìm hai nghiệm nào đó của hệ.

Cho z=0, ta có \(\left\{ \matrix{  x - y = 4 \hfill \cr  3x - y = 1 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x =  - {3 \over 2} \hfill \cr  y =  - {{11} \over 2}. \hfill \cr}  \right.\)

Vậy \({M_1}( - {3 \over 2}; - {{11} \over 2};0) \in \Delta .\)

Cho y=0, ta có \(\left\{ \matrix{  x + z = 4 \hfill \cr  3x + z = 1 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x =  - {3 \over 2} \hfill \cr  y = {{11} \over 2}. \hfill \cr}  \right.\)

Vậy \({M_2}\left( { - {3 \over 2};0;{{11} \over 2}} \right) \in \Delta .\)

Mặt phẳng phải tìm chính là mặt phẳng đi qua \({M_0},{M_1},{M_2}.\)

Viết phương trình mặt phẳng đi qua ba điểm trên, ta được:

\(15x-7y+7z-16=0.\)

b) Cách 1 : Ta thấy hệ phương trình

\(\left\{ \matrix{  y + 2z - 4 = 0 \hfill \cr  x + y - z + 3 = 0 \hfill \cr  x + y + z - 2 = 0 \hfill \cr}  \right.\)

Có một nghiệm duy nhất là\(\left( {{1 \over 2}; - 1;{5 \over 2}} \right).\)

Điều này có nghĩa là giao tuyến của hai mặt phẳng

\(y+2z-4=0\) và \(x+y-z+3=0\)

Cắt mặt phẳng \(x+y+z-2=0.\)

Vậy không tồn tại mặt phẳng thỏa mãn yêu cầu bài toán.

Cách 2 : Ta tìm hai điểm thuộc giao tuyến của hai mặt phẳng.

Cho z = 0, ta được \({M_1}( - 7;4;0),\) Cho y = 0, ta được \({M_2}( - 1;0;2).\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng song song với mặt phẳng \(x+y+z-2=0\) thì \(\left( \alpha  \right)\) có dạng :

\(x + y + z + D = 0,D \ne  - 2.\)

Ta xác định D để \({M_1},{M_2} \in \left( \alpha  \right).\) D là nghiệm của hệ :

\(\left\{ \matrix{   - 7 + 4 + D = 0 \hfill \cr   - 1 + 2 + D = 0. \hfill \cr}  \right.\)

Hệ vô nghiệm. Vậy không tồn tại mặt phẳng thỏa mãn yêu cầu bài toán.

c) Ta tìm hai điểm \({M_1},{M_2}\) thuộc giao tuyến của hai mặt phẳng.

Gọi \(\overrightarrow {n'}  = (2;0; - 1)\) là vec tơ pháp tuyến của mặt phẳng \(2x-z+7=0\).

Khi đó mặt phẳng cần tìm là mặt phẳng đi qua M1 và có vec tơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {n'} } \right].\)

Sau các tính toán, ta có kết quả : Mặt phẳng cần tìm có phương trình :

\(x-22y+2z+21=0.\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay