Bài 46 trang 63 Sách bài tập Hình học lớp 12 Nâng cao - Xét hình chóp tứ giác đều S.ABCD có cạ... DeHocTot.com

Bài 46 trang 63 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Xét hình chóp tứ giác đều S.ABCD có cạnh đáy và chiều cao thay đổi. Tìm hệ thức liên hệ giữa cạnh đáy và chiều cao của hình chóp để \({{{V_1}} \over {{V_2}}}\) đạt giá trị nhỏ nhất, ở đó \({V_1},{V_2}\) lần lượt là thể tích của các hình cầu ngoại tiếp và nội tiếp hình chóp.

Giải

Gọi x là độ dài cạnh đáy, y là chiều cao của hình chóp; R, r lần lượt là bán kính mặt cầu ngoại tiếp và nội tiếp hình chóp thì dễ tính được \(R = {{{x^2} + 2{y^2}} \over {4y}},\)

\(r = {{xy} \over {x + \sqrt {{x^2} + 4{y^2}} }}\). Vậy

\({{{V_1}} \over {{V_2}}} = {\left( {{R \over r}} \right)^3} = {\left[ {{{({x^2} + 2{y^2})(x + \sqrt {{x^2} + 4{y^2}} )} \over {4x{y^2}}}} \right]^3}.\)

Từ đó \({{{V_1}} \over {{V_2}}}\) nhỏ nhất khi và chỉ khi \({R \over r}\) nhỏ nhất.

Gọi \(\varphi \) là góc giữa mặt bên và mặt đáy của hình chóp thì \(\varphi  = \widehat {SIH}\) (I là trung điểm của BC ). Khi đó \(y = {x \over 2}\tan \varphi  \Rightarrow 4{y^2} = {x^2}{\tan ^2}\varphi ,\) từ đó

\(\eqalign{
& {R \over r} = {{\left( {{x^2} + {{{x^2}{{\tan }^2}\varphi } \over 2}} \right)\left( {x + \sqrt {{x^2} + {x^2}{{\tan }^2}\varphi } } \right)} \over {{x^3}{{\tan }^2}\varphi }} \cr
& = {{\left( {2 + {{\tan }^2}\varphi } \right)\left( {1 + {1 \over {\cos \varphi }}} \right)} \over {2{{\tan }^2}\varphi }} \cr
& = {{\left( {1 + {1 \over {{{\cos }^2}\varphi }}} \right)\left( {{{\cos \varphi + 1} \over {\cos \varphi }}} \right)} \over {2 \cdot {{1 - {{\cos }^2}\varphi } \over {{{\cos }^2}\varphi }}}} \cr
& = {{1 + {{\cos }^2}\varphi } \over {2\cos \varphi \left( {1 - \cos \varphi } \right)}} = {1 \over 2} \cdot {{1 + {t^2}} \over {t\left( {1 - t} \right)}} \cr} \)

(với \(0 < t = \cos \varphi  < 1.\))

Như vậy, \({{{V_1}} \over {{V_2}}}\) nhỏ nhất khi và chỉ khi \(f(t) = {{1 + {t^2}} \over {t(1 - t)}}\) đạt giá trị nhỏ nhất (0< t < 1).

Ta có :

\(\eqalign{  & f'(t) = {{2t(1 - {t^2}) - (1 - 2t)(1 + {t^2})} \over {{{\left[ {t(1 - t)} \right]}^2}}}  \cr  &  = {{2{t^2} - 2{t^3} - 1 + 2t - {t^2} + 2{t^3}} \over {{{\left[ {t(1 - t)} \right]}^2}}} = {{{t^2} + 2t - 1} \over {{t^2}{{(1 - t)}^2}}}.  \cr  &  \cr} \)

\(f'(t) = 0 \Leftrightarrow {t^2} + 2t - 1 = 0 \Leftrightarrow t =  - 1 + \sqrt 2 \) (do 0< t <1).

Ta có bảng biến thiên

 

Vậy f(t) đạt giá trị nhỏ nhất tại \(t =  - 1 + \sqrt 2 \), tức là \(\cos \varphi  = -1 + \sqrt 2 \)

\(\eqalign{  &  \Leftrightarrow 1 + {\tan ^2}\varphi  = {1 \over {3 - 2\sqrt 2 }}  \cr  &  \Leftrightarrow {\tan ^2}\varphi  = {{1 - 3 + 2\sqrt 2 } \over {3 - 2\sqrt 2 }} = {{2\left( {\sqrt 2  - 1} \right)} \over {{{\left( {\sqrt 2  - 1} \right)}^2}}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {2 \over {\sqrt 2  - 1}} = 2\left( {\sqrt 2  + 1} \right)  \cr  &  \Rightarrow \tan \varphi  = \sqrt {2\sqrt 2  + 2} . \cr} \)

Vậy hệ thức liên hệ giữa xy là \(y = x{{\sqrt {2\sqrt 2  + 2} } \over 2}.\)

Khi đó \({{{V_1}} \over {{V_2}}}\) đạt giá trị nhỏ nhất.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay