Bài 58 trang 13 Sách bài tập Hình học lớp 12 Nâng cao - Cho đường tròn đường kính AB = 2R nằ... DeHocTot.com

Bài 58 trang 13 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Cho đường tròn đường kính AB 2R nằm trong mặt phẳng \(\left( P \right)\) và một điểm M nằm trên đường tròn đó sao cho \(\widehat {MAB} = \alpha \). Trên đường thẳng vuông góc với \(\left( P \right)\) tại A, lấy điểm S sao cho SA=h. Gọi HK lần lượt là hình chiếu vuông góc của A trên SMSB.

a) Chứng minh rằng \(SB \bot mp\left( {KHA} \right)\).

b) Gọi I là giao điểm của HK với \(\left( P \right)\). Hãy chứng minh AI là tiếp tuyến của đường tròn đã cho.

c) Cho h = 2R, \(\alpha  = {30^0}\), tính thể tích khối chóp S.KHA.

Giải

(h.40)

 

a) Ta có \(BM \bot AM\) (vì M nằm trên đường tròn đường kính AB) và \(BM \bot SA\) (do \(SA \bot \left( P \right)\)), suy ra \(BM \bot \left( {SAM} \right) \Rightarrow BM \bot AH.\)

Mặt khác \(AH \bot SM,\) suy ra \(AH \bot SB,\)

Theo giả thiết , ta lại có \(AK \bot SB\)

Vậy \(SB \bot \left( {KHA} \right).\)

b) Vì \(SB \bot \left( {KHA} \right)\) nên \(SB \bot AI\), mặt khác \(SA \bot AI\)nên \(AI \bot AB\), mà AI thuộc \(mp\left( P \right)\), suy ra AI là tiếp tuyến của đường tròn đã cho tại điểm A.

c) Cách 1. Ta có :

\(\eqalign{  & {{{V_{S.KHA}}} \over {{V_{S.BMA}}}} = {{SK} \over {SB}}.{{SH} \over {SM}} = {{SK.SB} \over {S{B^2}}}.{{SH.SM} \over {S{M^2}}} \cr&= {{S{A^4}} \over {S{B^2}.S{M^2}}}  \cr  &  = {{(2R)^4} \over {\left( {4{R^2} + 4{R^2}} \right).\left( {4{R^2} + A{M^2}} \right)}} \cr&= {{2{R^2}} \over {4{R^2} + 4{R^2}.{{\cos }^2}\alpha }} = {1 \over {2\left( {1 + {{\cos }^2}\alpha } \right)}},  \cr  & {V_{S.BMA}} = {1 \over 3}{S_{BMA}}.SA = {1 \over 6}AM.BM.SA \cr&= {1 \over 6}2R\cos \alpha .2Rsin\alpha .2R  \cr  &  = {{2{R^3}} \over 3}\sin 2\alpha  = {{2{R^3}} \over 3}.{{\sqrt 3 } \over 2} = {{{R^3}\sqrt 3 } \over 2}. \cr} \)

Vậy \({V_{S.KHA}} = {1 \over {2\left( {1 + {{\cos }^2}\alpha } \right)}}.{{{R^3}\sqrt 3 } \over 3} \)

                      \(= {1 \over {2\left( {1 + {3 \over 4}} \right)}}.{{{R^3}\sqrt 3 } \over 3} = {{2{R^3}\sqrt 3 } \over {21}}\)

Cách 2. Dễ thấy \({V_{S.KHA}} = {1 \over 3}{S_{KHA}}.SK.\)

Dùng hệ thức lượng trong tam giác vuông, ta có thể tính được SK, AH, AK, HK ( với chú ý rằng tam giác KHA vuông ở H) theo R. Từ đó tính được thể tích khối chóp S.KHA.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay