Bài 59 trang 13 Sách bài tập Hình học lớp 12 Nâng cao - ... DeHocTot.com

Bài 59 trang 13 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Các cạnh bên của hình chóp O.ABC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Tính thể tích của khối lập phương nằm trong hình chóp này mà một đỉnh trùng với O và ba cạnh cùng xuất phát từ O nằm trên OA, OB, OC, còn đỉnh đối diện với O thuộc mặt phẳng \(\left( {ABC} \right).\)

Giải

(h.41)

 

Giả sử hình lập phương A’HB’O.GEFC’ thỏa mãn điều kiện của bài toán và điểm E thuộc \(mp\left( {ABC} \right).\)

Khi đó

\({V_{O.ABC}} = {V_{E.OAB}} + {V_{E.OBC}} + {V_{E.OCA}}.\)

Các khối chóp E.OAB, E.OBC, E.OCA có chiều cao x bằng cạnh của khối lập phương nói trên . Bởi vậy ta có :

\(\eqalign{  & {1 \over 6}abc = {1 \over 3}x\left( {{{ab} \over 2} + {{bc} \over 2} + {{ca} \over 2}} \right)  \cr  &  \Rightarrow x = {{abc} \over {ab + bc + ca}}. \cr} \)

Vậy : Vlập phương \(={x^3} = {{{a^3}{b^3}{c^3}} \over {{{\left( {ab + bc + ca} \right)}^3}}}.\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay