Bài 66 trang 132 Sách bài tập Hình học lớp 12 Nâng cao - Trong không gian tọa độ Oxyz cho hai đườ... DeHocTot.com

Bài 66 trang 132 Sách bài tập Hình học lớp 12 Nâng cao

Toán nâng cao


Trong không gian tọa độ Oxyz cho hai đường thẳng \(\Delta \) và \(\Delta '\),trong đó \(\Delta \) là giao tuyến của hai mặt phẳng :

\(\left( \alpha  \right):2x + y + 1 = 0\) và \(\left( \beta  \right):x - y + z - 1 = 0.\)

\(\Delta '\) là giao tuyến của hai mặt phẳng :

\(\left( {\alpha '} \right):3x + y - z + 3 = 0\) và \(\left( {\beta '} \right):2x - y + 1 = 0.\)

a) Chứng minh \(\Delta \) và \(\Delta '\) cắt nhau.

b) Viết phương trình chính tắc của các đường phân giác của các góc tạo bởi \(\Delta \) và \(\Delta '\).

Giải

a) Giải hệ gồm phương trình các mặt phẳng xác định \(\Delta \) và \(\Delta '\), ta có một nghiệm duy nhất.

        \(\left\{ \matrix{  x =  - {1 \over 2} \hfill \cr  y = 0 \hfill \cr  z = {3 \over 2}. \hfill \cr}  \right.\)

Vậy \(\Delta \) và \(\Delta '\) cắt nhau tại điểm \(I\left( { - {1 \over 2};0;{3 \over 2}} \right)\).

b) Ta chọn một điểm thuộc \(\Delta \), có thể lấy \(A = \left( {0; - 1;0} \right) \in \Delta .\)

Chọn một điểm thuộc \(\Delta '\), có thể lấy \(B = \left( {0;1;4} \right) \in \Delta '.\)

Khi đó, vectơ chỉ phương đơn vị của \(\Delta \) là \(\overrightarrow e  = {{\overrightarrow {IA} } \over {\left| {\overrightarrow {IA} } \right|}}\).

vectơ chỉ phương đơn vị của \(\Delta '\) là \(\overrightarrow e  = {{\overrightarrow {IB} } \over {\left| {\overrightarrow {IB} } \right|}}\).

Suy ra         \(\overrightarrow {{e_1}}  = \left( {{1 \over {\sqrt {14} }};{{ - 2} \over {\sqrt {14} }};{{ - 3} \over {\sqrt {14} }}} \right)\)

                   \(\overrightarrow {{e_2}}  = \left( {{1 \over {\sqrt {30} }};{2 \over {\sqrt {30} }};{5 \over {\sqrt {30} }}} \right)\)

Ta có \(\overrightarrow {{e_1}}  + \overrightarrow {{e_2}} \),\(\overrightarrow {{e_1}}  - \overrightarrow {{e_2}} \) là các vectơ chỉ phương của cặp đường phân giác của các góc tạo bởi \(\Delta \) và \(\Delta '\).

Vậy phương trình chính tắc của cặp đường phân giác là :

     \(\eqalign{  & \;\;\;\;\;{{x + {1 \over 2}} \over {{1 \over {\sqrt {14} }} + {1 \over {\sqrt {30} }}}} = {y \over {{{ - 2} \over {\sqrt {14} }} + {2 \over {\sqrt {30} }}}} = {{z - {3 \over 2}} \over {{{ - 3} \over {\sqrt {14} }} + {5 \over {\sqrt {30} }}}}  \cr  &\text{và}\cr& \;\;\;\;\;{{x + {1 \over 2}} \over {{1 \over {\sqrt {14} }} - {1 \over {\sqrt {30} }}}} = {y \over {{{ - 2} \over {\sqrt {14} }} - {2 \over {\sqrt {30} }}}} = {{z - {3 \over 2}} \over {{{ - 3} \over {\sqrt {14} }} - {5 \over {\sqrt {30} }}}} \cr} \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay