Câu 1 trang 209 sách bài tập Giải tích 12 Nâng cao - Cho hàm số:            \(f\left( x \... DeHocTot.com

Câu 1 trang 209 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Cho hàm số:

            \(f\left( x \right) = 1 + x + {{{x^2}} \over 2} - {e^x}\)

a) Chứng minh rằng \(f'\left( x \right) < 0\) với mọi x < 0

b)  Chứng minh bất đẳng thức

            \(1 + x < {e^x} + x + {{{x^2}} \over 2}\) với mọi x < 0

Giải

Hướng dẫn:

a) \(f'\left( x \right) = 1 + x - {e^x},f''\left( x \right) = 1 - {e^x}\)

\(f''\left( x \right) = 0 \Leftrightarrow x = 0\)

         

Dựa vào bảng biến thiên, ta có \(f'\left( x \right) > 0\) với mọi x < 0.

b)  Từ a) suy ra f nghịch biến trên nửa khoảng\(\left( { - \infty ;0} \right]\). Do đó

 \(f(x) > f(0)\) , với mọi x < 0,

Hay \(1 + x + {{{x^2}} \over 2} - {e^x} > 0\) với mọi x < 0

c) Từ b) suy ra

 \(1 - 0,01 < {e^{ - 0,01}} < 1 - 0,01 + {{0,0001} \over 2}\) .



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay