Câu 11 trang 211 sách bài tập Giải tích 12 Nâng cao - Giải các hệ phương trình sau:a) \(\left\{ ... DeHocTot.com

Câu 11 trang 211 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Giải các hệ phương trình sau:

a) \(\left\{ \matrix{5{\log _2}x - {\log _4}{y^2} = 8 \hfill \cr5{\log _2}{x^2} - {\log _4}y = 19 \hfill \cr}  \right.\) 

b) \(\left\{ \matrix{ {2^x}{.4^y} = 64 \hfill \cr \sqrt x  + \sqrt y  = 3 \hfill \cr}  \right.\)

Giải

a) \(\left( {x;y} \right) = \left( {4;4} \right)\)                         

Đặt \({\log _2}x = u\) và \({\log _4}y = v\), ta có hệ:

            \(\left\{ \matrix{5u - 2v = 8 \hfill \cr10u - v = 19 \hfill \cr}  \right.\)

b)  Lôgarit hóa hai vế của phương trình thứ nhất để đưa về dạng

            \(\left\{ \matrix{x + 2y = 6 \hfill \cr \sqrt x  + \sqrt y  = 3 \hfill \cr}  \right.\)

Rồi đặt \(\sqrt x  = u,\sqrt y  = v\left( {u \ge 0,v \ge 0} \right)\) dẫn đến hệ:

            \(\left\{ \matrix{{u^2} + 2{v^2} - 6 = 0 \hfill \cr u + v = 3 \hfill \cr}  \right.\)

Tìm được \(u = 2;v = 1\)

Suy ra \(\left( {x;y} \right) = \left( {4;1} \right)\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay