Câu 1.10 trang 11 sách bài tập Giải tích 12 Nâng cao - Cho hàm số f:\(\left( {{{ - \pi } \over 4};{\pi... DeHocTot.com

Câu 1.10 trang 11 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Cho hàm số f:\(\left( {{{ - \pi } \over 4};{\pi  \over 4}} \right) \to R\) xác đinh bởi

                                \(f(x) = cosx{\rm{ + }}\sin x\tan {x \over 2}\)

a) Tìm đạo hàm của hàm số f

b) Từ a) suy ra rằng hàm số f  là một hàm hằng trên khoảng \(f:\left( {{{ - \pi } \over 4};{\pi  \over 4}} \right)\) và tìm hằng đó.

Giải

a) Ta có

 \(f'(x) =  - {\mathop{\rm sinx}\nolimits}  + \cos x\tan {x \over 2} + {{{\mathop{\rm s}\nolimits} {\rm{inx}}} \over {2{{\cos }^2}{x \over 2}}}\)

            \( =  - {\mathop{\rm sinx}\nolimits}  + \cos x\tan {x \over 2} + \tan {x \over 2}\) 

            \( =  - {\mathop{\rm sinx}\nolimits}  + \tan {x \over 2}(1 + \cos x)\)

             \( =  - {\mathop{\rm sinx}\nolimits}  + {\mathop{\rm sinx}\nolimits}  = 0\) với mọi x ∈ \(\left( { - {\pi  \over 4};{\pi  \over 4}} \right).\)

b) Từ a) suy ra rằng f là một hàm hằng trên khoảng \(\left( { - {\pi  \over 4};{\pi  \over 4}} \right).\)

Do đó \(f(x) = f(0) = 1\) với mọi x ∈ \(\left( { - {\pi  \over 4};{\pi  \over 4}} \right).\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay