Câu 1.23 trang 14 sách bài tập Giải tích 12 Nâng cao - Hình thang cân ABCD có đáy nhỏ AB và hai c... DeHocTot.com

Câu 1.23 trang 14 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Hình thang cân ABCD có đáy nhỏ AB và hai cạnh bên đều dài 1m. Tính góc \(\alpha  = \widehat {DAB} = \widehat {CBA}\) sao cho hình thang có diện tích lớn nhất và diện tích lớn nhất đó (h.1.1)

Giải

Dựng \(AH \bot CD\). Đặt \(x = \widehat {ADC,}0 < x < {\pi  \over 2}\) , ta được AH = sinx; DH = cosx; DC = 1+ 2cosx. Diện tích hình thang là

\(S = {{AB + CD} \over 2}AH = (1 + \cos x)sinx;0 < x < {\pi  \over 2}\)

Bài toán quy về: Tìm \(x \in \left( {0;{\pi  \over 2}} \right)\) sao cho tại điểm đó s đạt giá trị lớn nhất trên khoảng \(\left( {0;{\pi  \over 2}} \right)\)

\(S '= (\cos x + 1)(2\cos x - 1);0 < x < {\pi  \over 2}\)

Hình thang có diện tích lớn nhất khi \(\alpha  = {{2\pi } \over 3}\) . Khi đó diện tích hình thang là \(S = {{3\sqrt 3 } \over 4}({m^2})\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay