Câu 1.37 trang 17 sách bài tập Giải tích 12 Nâng cao - Tìm tiệm cận đứng và tiệm cận xiên c... DeHocTot.com

Câu 1.37 trang 17 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau:

a) \(y = 2x - 1 + {1 \over x}\)                        b) \(y = {{{x^2} + 2x} \over {x - 3}}\)

c) \(y = x - 3 + {1 \over {2{{(x - 1)}^2}}}\)                 d) \(y = {{2{x^2} + {x^2}} \over {{x^2} + 1}}\)

Giải

a) Đường thẳng x = 0 là tiệm cận đứng của đồ thị (khi  \(x \to {0^ + }\) và \(x \to {0^ - }\).

Đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị (khi \(x \to  + \infty \) và \(x \to  - \infty \))

b) Đường thẳng  x = 3 là tiệm cận đứng của đồ thị (khi \(x \to {3^ - }\) và \(x \to {3^ + }\)).

Đường thẳng  y = x + 5 là tiệm cận xiên của đồ thị (khi  \(x \to  + \infty \) và \(x \to  - \infty \))

c) Vì \(\mathop {\lim }\limits_{x \to 1} y =  + \infty \) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị (khi \(x \to {1^ - }\) và \(x \to {1^ + }\)). Vì

\(y - (x - 3) = {1 \over {2{{(x - 1)}^2}}} \to 0\) khi \(x \to  + \infty \) và \(x \to  - \infty \)

nên đường thẳng y = x – 3 là tiệm cân xiên của đồ thị (khi \(x \to  + \infty \) và \(x \to  - \infty \)) (h.1.10).

d) Đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị (khi \(x \to  + \infty \) và \(x \to  - \infty \))

Có thể viết hàm số đã cho dưới dạng

\(y = 2x - 1 + {{1 - 2x} \over {{x^2} + 1}} \)

Vì hàm số xác định trên R nên đồ thị của nó không có tiệm cận đứng.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay