Câu 2.100 trang 86 sách bài tập Giải tích 12 Nâng cao - Giải các phương trình sau:a) \({2^{{x^{2 - 4... DeHocTot.com

Câu 2.100 trang 86 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Giải các phương trình sau:

a) \({2^{{x^{2 - 4}}}} = {3^{x - 2}};\)

b) \({4^{{{\log }_{0,5}}({{\sin }^2}x + 5\sin x\cos x + 2) = {1 \over 9}}}.\)

Giải                  

a) Lôgarit cơ số 2 hai vế ta được:

\(\eqalign{
& \Leftrightarrow {x^2} - 4 = \left( {x - 2} \right){\log _2}3 \cr
& \Leftrightarrow \left( {x - 2} \right)\left( {x + 2} \right) - \left( {x - 2} \right){\log _2}3 = 0 \cr
& \Leftrightarrow \left( {x - 2} \right)\left( {x + 2 - {{\log }_2}3} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr
x = - 2 + {\log _2}3 \hfill \cr} \right. \cr} \)

Vậy phương trình có nghiệm là: \(x=2\) và \(x = - 2 + {\log _2}3\)

b) Điều kiện để phương trình có nghĩa là

                                \({\sin ^2}x + 5\sin x\cos x + 2 > 0\)

Lấy lôgarit cơ số 4 cả hai vế của phương trình , ta được

     \({\log _{0,5}}({\sin ^2}x + 5\sin x\cos x + 2){\log _4}{3^{ - 2}}\)

\( \Leftrightarrow  - {\log _2}({\sin ^2}x + 5\sin x\cos x + 2) =  - {\log _2}3\)

\( \Leftrightarrow {\sin ^2}x + 5\sin x\cos x + 2 = 3\) ( thỏa mãn điều kiện )

\( \Leftrightarrow \cos x(5\sin x - \cos x) = 0\)

+) \(\cos x = 0\) ta tìm được \(x = {\pi  \over 2} + k\pi \).

+) \(5{\mathop{\rm sinx}\nolimits}  - \cos x = 0\), tức là \(\tan x = {1 \over 5}\) . Do đó \(x = \arctan {1 \over 5} + k\pi \)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay