Câu 2.112 trang 88 sách bài tập Giải tích 12 Nâng cao - a)\(\left\{ \matrix{ x + y = 11 \hfill \cr{\log _2... DeHocTot.com

Câu 2.112 trang 88 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


a)\(\left\{ \matrix{ x + y = 11 \hfill \cr{\log _2}x + {\log _2}y = 1 + {\log _2}15 \hfill \cr}  \right.\)                                   b) \(\left\{ \matrix{ \log ({x^2} + {y^2}) = 1 + \log 8 \hfill \cr\log (x + y) - log(x - y) = \log 3; \hfill \cr}  \right.\) 

Giải         

a) Điều kiện \(x > 0,y > 0\)

Biến đổi phương trình thứ hai trong hệ như sau:

\({\log _2}x + {\log _2}y = 1 + {\log _2}15 \Leftrightarrow {\log _2}xy = {\log _2}30\)

\( \Leftrightarrow xy = 30\)

\(\left( {x;y} \right)\) là \(\left( {5;6} \right),\left( {6;5} \right)\)

b) Điều kiện \(x + y > 0,x - y > 0\)

Biến đổi phương trình thứ nhất và phương trình thứ hai trong hệ như sau:

\(\eqalign{& \log ({x^2} + {y^2}) = 1 + \log 8 \Leftrightarrow \log ({x^2} + {y^2}) = \log 80\cr&\Leftrightarrow  {x^2} + {y^2}=80\cr& log(x + y) - log(x - y) = \log 3\cr& \Leftrightarrow \log {{x + y} \over {x - y}} = \log 3\cr& \Leftrightarrow {{x + y} \over {x - y}} = 3 \cr} \)

Vậy \(\left( {x;y} \right) = \left( {8;4} \right)\)

 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay