Câu 2.118 trang 89 sách bài tập Giải tích 12 Nâng cao - a) \(\left\{ \matrix{9{x^2} - 4{y^2} = 5 \hfill \... DeHocTot.com

Câu 2.118 trang 89 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


a) \(\left\{ \matrix{9{x^2} - 4{y^2} = 5 \hfill \cr{\log _5}\left( {3x + 2y} \right) - {\log _3}\left( {3x - 2y} \right) = 1 \hfill \cr}  \right.\)                    

b) \(\left\{ \matrix{{5^{\ln x}} = {6^{\ln y}}  \hfill \cr{\left( {6x} \right)^{\ln 6}} = {\left( {5y} \right)^{\ln 5}} \hfill \cr}  \right.\)

Giải

a) ĐKXĐ: \(3x \pm 2y > 0\)

Lôgarit cơ số 5 hai vế của phương trình đầu ta được

\({\log _5}\left( {3x + 2y} \right) - {\log _5}\left( {3x - 2y} \right) = 1\)

Biến đổi phương trình thứ hai thành \({\log _5}\left( {3x + 2y} \right) - {{{{\log }_5}\left( {3x - 2y} \right)} \over {{{\log }_5}3}} = 1\)

Sau đó đặt \({\log _5}\left( {3x + 2y} \right) = u;{\log _5}\left( {3x - 2y} \right) = v\)

\(\left( {u > 0,v > 0} \right)\) dẫn đến hệ

                                \(\left\{ \matrix{u - v = 1 \hfill \cr u - {v \over {{{\log }_5}3}} = 1 \hfill \cr}  \right.\)

Ta tìm được: v=0, u=1

Vậy \(\left( {x;y} \right) = \left( {1;1} \right)\)

b) Điều kiện \(x > 0,y > 0\)

Lôgarit cơ số e hai vế của  cả hai  phương trình của hệ dẫn đến

\(\left\{ \matrix{\ln x\ln 5 = \ln y\ln 6 \hfill \cr\ln 6\left( {\ln 6 + \ln x} \right) = \ln 5\left( {\ln 5 + \ln y} \right) \hfill \cr}  \right.\)

Giải hệ ta được: \(\left( {x;y} \right) = \left( {{1 \over 6};{1 \over 5}} \right)\)

 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay