Câu 2.134 trang 92 sách bài tập Giải tích 12 Nâng cao - Cho 3 số dương a, b, c đôi một khác nhau ... DeHocTot.com

Câu 2.134 trang 92 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Cho 3 số dương a, b, c đôi một khác nhau và khác 1. Chứng minh rằng

a) \(\log _a^2{b \over c} = \log _a^2{c \over b}\)                 b) \({\log _a}b{\log _b}c{\log _c}a = 1\)  

c) Trong ba số  \(\log _{{a \over b}}^2{c \over b},\log _{{c \over b}}^2{a \over c},\log _{{c \over a}}^2{b \over a}\) luôn có ít nhất một số lớn hơn 1.       

Giải

a) Do \({\log _a}{b \over c} =  - {\log _a}{c \over b}\) nên \(\log _a^2{b \over c} = \log _a^2{c \over b}\)

b) \({\log _a}b{\log _b}c{\log _c}a = {\log _b}c{\log _c}{a^{{{\log }_a}b}} = {\log _b}c{\log _c}b = 1\)

c) Từ câu a) suy ra

\(\log _{{a \over b}}^2{c \over b} = \log _{{a \over b}}^2{b \over c};\log _{{b \over c}}^2{a \over c} = \log _{{b \over c}}^2{c \over a};\log _{{c \over a}}^2{b \over a} = \log _{{c \over a}}^2{a \over b}\)

Do đó \(\log _{{a \over b}}^2{c \over b}.\log _{{b \over c}}^2{a \over c}\log _{{c \over a}}^2{b \over a} = \log _{{a \over b}}^2{b \over c}\log _{{b \over c}}^2{c \over a}\log _{{c \over a}}^2{a \over b} = 1\)

Vì vậy suy ra điều cần chứng minh.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay