Câu 2.135 trang 93 sách bài tập Giải tích 12 Nâng cao - Giải các phương trình sau:a) \({9.243^{{{x ... DeHocTot.com

Câu 2.135 trang 93 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Giải các phương trình sau:

a) \({9.243^{{{x + 5} \over {x - 7}}}} = {2187^{{{x + 17} \over {x - 3}}}}\)

b) \({4^{\sqrt {{x^2} + 5}  - x}} - {2^{\sqrt {{x^2} + 5}  - x + 2}} =  - 4\)

c) \({\left| {2005 - x} \right|^{2006}} + {\left| {2006 - x} \right|^{2005}} = 1\)

d) \({3^x} - {3^{ - x}} = \root 3 \of {8 - {x^2}} \)

Giải

a) Đưa cả hai vế về lũy thừa cùng cơ số 3.

\(\eqalign{
& \Leftrightarrow {3^2}{.3^{5.{{x + 5} \over {x - 7}}}} = {3^{7.{{x + 17} \over {x - 3}}}} \cr
& \Leftrightarrow 2 + {{5\left( {x + 5} \right)} \over {x - 7}} = {{7.\left( {x + 17} \right)} \over {x - 3}} \cr} \)

Giải ra ta được: \(x=10\)

b) Đặt \(t = {2^{\sqrt {{x^2} + 5}  - x}}\) ( với t > 0) ta có: 

\(\eqalign{
& {t^2} - 4t + 4 = 0 \cr
& \Leftrightarrow t = 2 \Rightarrow \sqrt {{x^2} + 5} - x = 1 \cr} \)

Giải ra ta được: \(x = 2\)

c) 

 Nhận xét  \(x = 2005\) và \(x = 2006\) là hai nghiệm, rồi chứng tỏ không còn nghiệm nào khác như sau :

\( \bullet \) Với \(x < 2005\) hoặc \(x > 2006\), dễ thấy vế trái lớn hơn vế phải.

\( \bullet \) Với \(2005 < x < 2006\) thì \(0 < \left| {2005 - x} \right| < 1,0 < \left| {2006 - x} \right| < 1\)

Do đó \({\left| {2005 - x} \right|^{2006}} < \left| {2005 - x} \right| = x - 2005\)

          \({\left| {2006 - x} \right|^{2005}} < \left| {2006 - x} \right| = 2006 - x\)

Dẫn đến vế trái nhỏ hơn vế phải.

d) \(x = 0\)

 Áp dụng bất đẳng thức Cô-si chỉ ra hai vế trái không nhỏ hơn 2, còn dễ thấy vế phải không nhỏ hơn 2.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay