Câu 2.138 trang 93 sách bài tập Giải tích 12 Nâng cao - Giải các bất phương trình sau:a) \(\left|... DeHocTot.com

Câu 2.138 trang 93 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Giải các bất phương trình sau:

a) \(\left| {{{\log }_4}x - 3} \right| < 1\)

b) \({\log _2}x + {\log _3}x < 1 + {\log _2}x{\log _3}x\)

c) \({15^{2x + 3}} > {5^{3x + 1}}{.3^{x + 5}}\)

d) \({{{{\log }^2_{a}}x.{{\log }_a}x + 2} \over {{{\log }_a}x - 2}} > 1\) với a > 0 và \(a \ne 1\)

Giải

a)

Cách 1. \(\left| {{{\log }_4}x - 3} \right| < 1 \Leftrightarrow {({\log _4}x - 3)^2} < 1\)

\(\Leftrightarrow \log _4^2x - 6{\log _4}x + 8 < 0\)

\( \Leftrightarrow 2 < {\log _4}x < 4 \Leftrightarrow 16 < x < 256\).

Cách  2.\(\left| {{{\log }_4}x - 3} \right| < 1 \Leftrightarrow  - 1 < {\log _4}x - 3 < 1\)

\(\Leftrightarrow 2<{\log _4}x < 4\)

\( \Leftrightarrow 16 < x < 256\).

b) 

 Biến đổi bất phương trình về dạng

                                \(({\log _2}x - 1)(1 - {\log _3}x) < 0\)

Xảy ra hai trường hợp

\( \bullet \left\{ \matrix{{\log _2}x - 1 > 0 \hfill \cr1 - {\log _3}x < 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{x > 2 \hfill \cr x > 3 \hfill \cr}  \right. \Leftrightarrow x > 3\)

\( \bullet \left\{ \matrix{ {\log _2}x - 1 < 0 \hfill \cr1 - {\log _3}x > 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{0 < x < 2 \hfill \cr0 < x < 3 \hfill \cr}  \right. \Leftrightarrow 0 < x < 2\)

c) Chia cả hai vế của bất phương trình cho \({15^{2x + 3}}\)

\(\eqalign{
& \Leftrightarrow {\left( {{5 \over 3}} \right)^x} < {{25} \over 9} \cr
& \Leftrightarrow {\left( {{5 \over 3}} \right)^x} < {\left( {{5 \over 3}} \right)^2} \cr
& \Leftrightarrow x < 2 \cr} \)

d) Đặt \({\log _a}x = t\) (với \(t \ne 2\)), ta có \({{{t^2} + t + 2} \over {t - 2}} > 1 \Leftrightarrow t > 2\), tức là \({\log _a}x > 2\). Sau đó xét hai khả năng \(a > 1,0 < a < 1\)

Kết luận: 

Với a > 1 thì \(x > {a^2}\)

Với 0 < a < 1 thì  0 < x <\({a^2}\)

 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay