Câu 22 trang 211 sách bài tập Giải tích 12 Nâng cao - Tìm số phức z sao cho \(\left| {{{z + 3i} \ov... DeHocTot.com

Câu 22 trang 211 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Tìm số phức z sao cho \(\left| {{{z + 3i} \over {z + i}}} \right| = 1\)\(z + 1\) có một acgumen bằng \( - {\pi  \over 6}\)

Giải

Điều kiện \(\left| {{{z + 3i} \over {z + i}}} \right| = 1\) nói rằng phần ảo của z bằng -2. Điều kiện \(z + 1\) có một acgumen bằng \( - {\pi  \over 6}\)nói rằng \(z + 1 = l\left( {\sqrt 3  - i} \right)\) với \(l > 0\).

Vậy \(z + 1 = 2\left( {\sqrt 3  + i} \right),\) tức là \(z = 2\sqrt 3  - 1 - 2i.\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay