Câu 2.48 trang 77 sách bài tập Giải tích 12 Nâng cao - Hãy chứng minha)\({\log _{{1 \over 2}}}3 + {\lo... DeHocTot.com

Câu 2.48 trang 77 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Hãy chứng minh

a)\({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} <  - 2;\)           b)\({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}};\)

c) \({\log _3}7 + {\log _7}3 > 2;\)                d) \({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}}.\)

Giải

a) Ta có \({\log _{{1 \over 2}}}3 = {1 \over {{{\log }_3}{1 \over 2}}}\)và\({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} + \left| {{{\log }_3}{1 \over 2}} \right| > 2\)

( theo công thức đổi cơ số của lôgarit,bất đẳng thức Cô- si và \({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} \ne \left| {{{\log }_3}{1 \over 2}} \right|)\)

Mặt khác, \({\log _3}{1 \over 2} < 0\) nên \( - {1 \over {{{\log }_3}{1 \over 2}}} - {\log _3}{1 \over 2} > 2\), hay \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} <  - 2\)

b) \({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}} \Leftrightarrow {\log _4}{4^{{{\log }_5}7}} = {\log _4}{7^{{{\log }_5}4}} \)

\(\Leftrightarrow {\log _5}7 = {\log _5}4.{\log _4}7\).

Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng .

c) Ta có   \({\log _3}7 > 0\),\({\log _7}3 > 0\) và \({\log _3}7 = {1 \over {{{\log }_7}3}} \ne {\log _7}3\).

Theo bất đẳng thức Cô-si, ta có

\({1 \over {{{\log }_7}3}} + {\log _7}3 > 2\),suy ra \({\log _3}7 + {\log _7}3 > 2\).

d) \({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}} \Leftrightarrow {\log _3}{3^{{{\log }_2}5}} = {\log _3}{5^{{{\log }_2}3}}\)

\(\Leftrightarrow {\log _2}5 = {\log _2}3.{\log _3}5\).

Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng .



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay