Câu 2.74 trang 82 sách bài tập Giải tích 12 Nâng cao - Tính các giới hạn sau:a) \(\mathop {\lim }\l... DeHocTot.com

Câu 2.74 trang 82 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 9} {\log _3}x\)               

b) \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {4x + 1} \right)} \over x}\)

c) \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {3x + 1} \right) - \ln \left( {2x + 1} \right)} \over x}\)                                                     d) \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + 3x} \right)} \over {\sin 2x}}\)

Hướng dẫn: d) Vận dụng công thức \(\mathop {\lim }\limits_{x \to 0} {{\sin x} \over x} = 1\)

Giải

a) \(\mathop {\lim }\limits_{x \to 9} {\log _3}x={\log _3}9 = 2\)                                   

b) \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {4x + 1} \right)} \over x}\)

 \(=\mathop {\lim }\limits_{x \to 0} 4.{{\ln \left( {4x + 1} \right)} \over {4x}}=4.1=4\)

c) \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {3x + 1} \right) - \ln \left( {2x + 1} \right)} \over x} \)

\(= \mathop {\lim }\limits_{x \to 0} {{\ln \left( {3x + 1} \right)} \over {3x}}.3 - \mathop {\lim }\limits_{x \to 0} {{\ln \left( {2x + 1} \right)} \over {2x}}.2 = 3 - 2 = 1\)

d) \(\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + 3x} \right)} \over {\sin 2x}} = \mathop {\lim }\limits_{x \to 0} {{{{\ln \left( {1 + 3x} \right)} \over {3x}}} \over {{{\sin 2x} \over {2x}}}}.{3 \over 2} = {{\mathop {\lim }\limits_{x \to 0} {{\ln \left( {1 + 3x} \right)} \over {3x}}} \over {\mathop {\lim }\limits_{x \to 0} {{\sin 2x} \over {2x}}}}.{3 \over 2} = {3 \over 2}\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay