Câu 2.93 trang 85 sách bài tập Giải tích 12 Nâng cao - Dùng phương pháp đặt ẩn phụ để giả... DeHocTot.com

Câu 2.93 trang 85 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Dùng phương pháp đặt ẩn phụ để giải các phương trình sau:

a) \(4{\log _9}x + {\log _x}3 = 3\)                                          

b) \({\log _x}2 - {\log _4}x + {7 \over 6} = 0\)                                               

c) \({{1 + {{\log }_3}x} \over {1 + {{\log }_9}x}} = {{1 + {{\log }_{27}}x} \over {1 + {{\log }_{81}}x}}.\)

Giải

a) Ta có: \({\log _x}3 = {1 \over {{{\log }_3}x}}\). Đặt \(t = {\log _3}x(t \ne 0)\) dẫn đến phương trình

\(2{t^2} - 3t + 1 = 0\)

\(\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _3}x = 1 \hfill \cr
{\log _3}x = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr
x = \sqrt 3 \hfill \cr} \right.\)

Vậy phương trình có hai nghiệm: \(x = 3\) và \(x = \sqrt 3 \) 

b) Ta có: \({\log _x}2 = {1 \over {{{\log }_2}x}}\).            

Đặt \(t = {\log _2}x(t \ne 0)\) dẫn đến phương trình

\( - 3{t^2} + 7t + 6 = 0\)

\( \Leftrightarrow \left[ \matrix{
t = 3 \hfill \cr
t = {{ - 2} \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _2}x = 3 \hfill \cr
{\log _2}x = {{ - 2} \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 8 \hfill \cr
x = {2^{{{ - 2} \over 3}}} \hfill \cr} \right.\)

Vậy phương trình có hai nghiệm: \(x = 8\) và \(x = {2^{ - {2 \over 3}}}\)

c) Đặt \(t = {\log _3}x\), ta có

\(\eqalign{& {{1 + t} \over {1 + {1 \over 2}t}} = {{1 + {1 \over 3}t} \over {1 + {1 \over 4}t}}\cr&\Leftrightarrow 3\left( {1 + t} \right)\left( {4 + t} \right) = 2\left( {2 + t} \right)\left( {3 + t} \right)  \cr&  \Leftrightarrow 12 + 15t + 3{t^2} = 12 + 10t + 2{t^2} \Leftrightarrow {t^2} + 5t = 0 \cr} \)

 \(\, \Leftrightarrow t = 0\) hoặc \(t =  - 5\)

Với \(t = 0\) thì \({\log _3}x = 0\), nên \(x = {3^0} = 1\)

Với \(t =  - 5\) thì \({\log _3}x =  - 5\), nên \(x = {3^{ - 5}} = {1 \over {243}}\)

Vậy phương trình có hai nghiệm: \(x = 1\) và \(x = {1 \over {243}}\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay