Câu 2.97 trang 86 sách bài tập Giải tích 12 Nâng cao - Tìm m để mỗi phương trình sau có nghiệ... DeHocTot.com

Câu 2.97 trang 86 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Tìm m để mỗi phương trình sau có nghiệm duy nhất:

a) \({16^{x + 1}} + {4^{x - 1}} - 5m = 0;\)                                        

b) \(2{\log _2}\left( {x + 4} \right) = {\log _2}\left( {mx} \right).\)   

Giải

a) Đặt \({4^x} = t(t > 0)\). Bài toán trở thành:

Tìm m để phương trình \(16{t^2} + {t \over 4} - 5m = 0\) (1) có  nghiệm dương duy nhất.            

Điều kiện để (1) có nghiệm là \(\Delta  = {1 \over {16}} + 320m \ge0\) hay \(m\ge  - {1 \over {5120}}\) . Lại có \({t_1} + {t_2} =  - {1 \over {64}};{t_1}{t_2} =  - {{5m} \over {16}}\) .

Nên (1) có nghiệm duy nhất khi \( - {{5m} \over {16}} < 0\), tức là m > 0.

b) Bài toán quy về tìm m để hệ

                                \(\left\{ \matrix{{(x + 4)^2} = mx \hfill \cr x + 4 > 0 \hfill \cr}  \right.\)                        

có nghiệm duy nhất

hay  

\(\left\{ \matrix{{x^2} + (8 - m)x + 16 = 0\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr x >  - 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2\right) \hfill \cr}  \right.\) có nghiệm duy nhất

tức là (1) có nghiệm duy nhất thỏa mãn \(x >  - 4\).

Phương trình (1) có nghiệm khi\(\Delta  = {m^2} - 16m \ge 0\) hay \(m \le 0\) hoặc \(m \ge 16\) .

Xét cả trường hợp :

+) \(m = 0\) thì (1) có nghiệm kép \({x_1} = {x_2} = {{0 - 8} \over 2} =  - 4\) ( không thỏa mãn \(x >  - 4\) ).

+) \(m = 16\) thì (1) có nghiệm kép \({x_1} = {x_2} = {{16 - 8} \over 2} = 4\) (  thỏa mãn \(x >  - 4\) ).

+) \(m < 0\) hoặc \(m > 16\) thì (1) có hai nghiệm phân biệt \({x_1},{x_2}({x_1} < {x_2})\) .

Ta có : \({x_1} <  - 4 < {x_2} \Leftrightarrow ({x_1} + 4)({x_2} + 4) < 0 \)

\(\Leftrightarrow {x_1}{x_2} + 4({x_1} + {x_2}) + 16 < 0\) .

Theo hệ thức . Vi-et ta có \({x_1}{x_2} = 16\) và \({x_1} + {x_2} = m - 8\).

Dẫn theo \(16 + 4(m - 8) + 16 < 0 \Leftrightarrow m < 0\) .



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay