Câu 4.23 trang 180 sách bài tập Giải tích 12 Nâng cao - a) Chứng minh rằng nếu ba số phức  \({z... DeHocTot.com

Câu 4.23 trang 180 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


a) Chứng minh rằng nếu ba số phức  \({z_1},{z_2},{z_3}\) thỏa mãn

                    \(\left\{ \matrix{\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1 \hfill \cr{z_1} + {z_2} + {z_3} = 1 \hfill \cr}  \right.\)

Thì một trong ba số đó phải bằng 1.

b) Giải hệ phương trình ba ẩn phức \({z_1},{z_2},{z_3}\) sau:

                    \(\left\{ \matrix{ \left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1 \hfill \cr{z_1}{z_2} + {z_3} = 1 \hfill \cr{z_1}{z_2}{z_3} = 1 \hfill \cr}  \right.\)                                                                  

Giải

a) Viết \(1 - {z_1} = {z_2} + {z_3}\)

Nếu \({z_1} = 1\) thì \({z_2} + {z_3} = 0\)

Nếu \({z_1} \ne 1\) thì \(1 - {z_1} \ne 0\), điểm P biểu diễn số \(1 + \left( { - {z_1}} \right) = {z_2} + {z_3}\) không trùng với O nên do \(1 = \left| { - {z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\), đường trung trực OP cắt đường tròn đơn vị tại hai điểm biểu diễn \(1, - {z_1}\) và cũng là hai điểm biểu diễn \({z_2},{z_3}\) (h.4.7). Vậy \({z_2} = 1,{z_3} =  - {z_1}\) hoặc \({z_2} =  - {z_1},{z_3} = 1\). Tóm lại hoặc \({z_1} = 1\) hoặc \({z_2} = 1\) hoặc \({z_3} = 1\) và tổng hai số z còn lại bằng 0

b) Từ hai phương trình đầu của hệ, theo câu a) có thể coi \({z_1} = 1,{z_2} + {z_3} = 0\). Khi đó điều kiện \(z_1z_2z_3=1\) kéo theo hoặc \({z_2} = i,{z_3} =  - i\) hoặc \({z_2} =  - i,{z_3} = i.\). Suy ra hệ có 6 nghiệm do đổi chỗ các phần tử của bộ ba \(\left( {1,i, - i} \right)\)

             

                                               



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay