Câu 4.28 trang 181 sách bài tập Giải tích 12 Nâng cao - ... DeHocTot.com

Câu 4.28 trang 181 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Viết dạng lượng giác của mỗi số phức sau:

a) \(\sin \varphi  + i2{\sin ^2}{\varphi  \over 2}\)                       

b) \({\rm{cos}}\varphi  + i\left( {1 + \sin \varphi } \right)\)

Giải

a) \(\sin \varphi  +2 i{\sin ^2}{\varphi  \over 2} = 2\sin {\varphi  \over 2}\left( {{\rm{cos}}{\varphi  \over 2} + isin{\varphi  \over 2}} \right),\) nên

khi \(\sin {\varphi  \over 2} = 0,\) số đó có dạng lượng giác không xác định

khi \(\sin {\varphi  \over 2} > 0,\) dạng viết trên là dạng lượng giác của số đã cho.

Khi \(\sin {\varphi  \over 2} < 0,\) số đó có dạng lượng giác

\( - 2\sin {\varphi  \over 2}\left[ {{\rm{cos}}\left( {{\varphi  \over 2} + \pi } \right) + isin\left( {{\varphi  \over 2} + \pi } \right)} \right]\)

b) \({\rm{cos}}\varphi  + i\left( {1 + \sin \varphi } \right) \)

\(= \sin \left( {\varphi  + {\pi  \over 2}} \right) + i\left[ {1 - c{\rm{os}}\left( {\varphi  + {\pi  \over 2}} \right)} \right]\)

\(=sin\left( {\varphi  + {\pi  \over 2}} \right) + i2{\sin ^2}\left( {{\varphi  \over 2} + {\pi  \over 4}} \right)\)

Nên theo câu a) ta có:

Khi \(\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right) = 0,\) số đã cho có dạng lượng giác không xác định.

Khi \(\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right) > 0,\) số đã cho có dạng lượng giác

\(  2\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right)\left[ {{\rm{cos}}\left( {{\varphi  \over 2} + {\pi  \over 4}} \right) + isin\left( {{\varphi  \over 2} + {\pi  \over 4}} \right)} \right]\)

Khi \(\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right) < 0,\) số đã cho có dạng lượng giác

\( - 2\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right)\left[ {{\rm{cos}}\left( {{\varphi  \over 2} + {{5\pi } \over 4}} \right) + isin\left( {{\varphi  \over 2} + {{5\pi } \over 4}} \right)} \right]\)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay