Câu 4.32 trang 182 sách bài tập Giải tích 12 Nâng cao - a) Hỏi với số nguyên dương n nào, số p... DeHocTot.com

Câu 4.32 trang 182 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


a) Hỏi với số nguyên dương n nào, số phức \({\left( {{{3 - \sqrt 3 i} \over {\sqrt 3  - 3i}}} \right)^n}\) là số thực, là số ảo ?

b) Cũng câu hỏi tương tự cho số phức \({\left( {{{7 + i} \over {4 - 3i}}} \right)^n}\)

Giải      

a) \({{3 - \sqrt 3 i} \over {\sqrt 3  - 3i}} = {{\sqrt 3  + i} \over 2} = c{\rm{os}}{\pi  \over 6} + isin{\pi  \over 6}\) nên với số n nguyên dương, ta có:

                                \({\left( {{{3 - \sqrt 3 i} \over {\sqrt 3  - 3i}}} \right)^n} = c{\rm{os}}{{n\pi } \over 6} + isin{{n\pi } \over 6}\)

Số đó là số thực \( \Leftrightarrow \sin {{n\pi } \over 6} = 0 \Leftrightarrow n = 6k\) (k là số nguyên dương)

Số đó là số ảo \( \Leftrightarrow c{\rm{os}}{{n\pi } \over 6} = 0 \Leftrightarrow {{n\pi } \over 6} = {\pi  \over 2} + k\pi  \Leftrightarrow n = 6k + 3\) (k là số nguyên không âm).

b) \({{7 + i} \over {4 - 3i}} = 1 + i = \sqrt 2 \left( {{\rm{cos}}{\pi  \over 4} + isin{\pi  \over 4}} \right)\) nên với số n nguyên dương, ta có:

\({\left( {{{7 + i} \over {4 - 3i}}} \right)^n} = {\left( {\sqrt 2 } \right)^n}\left( {{\rm{cos}}{n\pi  \over 4} + isin{n\pi  \over 4}} \right)\)

Số đó là số thực \( \Leftrightarrow \sin {{n\pi } \over 4} = 0 \Leftrightarrow n = 4k\) (k nguyên dương)

Số đó là số ảo \( \Leftrightarrow \cos {{n\pi } \over 4} = 0 \Leftrightarrow n = 4k+2\) (k là số nguyên không âm)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay