Câu 4.33 trang 182 sách bài tập Giải tích 12 Nâng cao - Cho A, B, C, D là bốn điểm trong mặt phẳ... DeHocTot.com

Câu 4.33 trang 182 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Cho A, B, C, D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số

\(4 + \left( {3 + \sqrt 3 } \right)i\)                       \(2 + \left( {3 + \sqrt 3 } \right)i\)       \(1 + 3i\)                               \(3 + i\)

Chứng minh rằng bốn điểm đó cùng nằm trên một đường tròn.

Giải

Chỉ cần chứng minh các góc lượng giác (CA,CB), (DA, DB) có số đo bằng nhau (sai khác \(k\pi, \;k\in Z\) ) (h.4.12)

Ta có \(\overrightarrow {CA} \) biểu diễn số phức \(3 + \sqrt 3 i\),  \(\overrightarrow {CB} \) biểu diễn số phức \(1 + \sqrt 3 i\) nên số đo góc (CA, CB) là một acgumen của \({{1 + \sqrt 3 i} \over {3 + \sqrt 3 i}}\) cũng là một acgumen của \(\left( {1 + \sqrt 3 i} \right)\left( {3 - \sqrt 3 i} \right) = 2\sqrt 3 \left( {\sqrt 3  + i} \right)\)

                                                                

Ta có \(\overrightarrow {DA} \) biểu diễn số phức \(1 + (2 + \sqrt 3 )i\),\(\overrightarrow {DB} \) biểu diễn số phức \( - 1 + (2 + \sqrt 3 )i\) nên số đo góc (DA, DB) là một acgumen của \({{ - 1 + (2 + \sqrt 3 )i} \over {1 + (2 + \sqrt 3 )i}}\) cũng là một acgumen của

\(\left[ { - 1 + \left( {2 + \sqrt 3 } \right)i} \right]\left[ {1 - \left( {2 + \sqrt 3 } \right)i} \right] \)

\(= 2\left( {\sqrt 3  + 2} \right)\left( {\sqrt 3  + i} \right)\)

Rõ ràng số này số \(2\sqrt 3 (\sqrt 3  + i)\) có cùng acgumen ( sai khác \(k2\pi ,k \in Z\))



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay