Câu 4.44 trang 184 sách bài tập Giải tích 12 Nâng cao - Chứng minh rằng hai số phức phân biệt \... DeHocTot.com

Câu 4.44 trang 184 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Chứng minh rằng hai số phức phân biệt \({z_1},{z_2}\) thỏa mãn điều kiện \(\left| {{z_1}} \right| = \left| {{z_2}} \right|\)  khi và chỉ khi \({{{z_1} + {z_2}} \over {{z_1} - {z_2}}}\) là số ảo.

Giải

\({z_1} \ne {z_2}\) thì \({{{z_1} + {z_2}} \over {{z_1} - {z_2}}}\) là số ảo \( \Leftrightarrow {{{z_1} + {z_2}} \over {{z_1} - {z_2}}} + \overline {\left( {{{{z_1} + {z_2}} \over {{z_1} - {z_2}}}} \right)}  = 0\)

\( \Leftrightarrow \left( {{z_1} + {z_2}} \right)\overline {\left( {{z_1} - {z_2}} \right)}  + \left( {{z_1} - {z_2}} \right)\overline {\left( {{z_1} + {z_2}} \right)}  = 0\)

\( \Leftrightarrow 2\left( {{z_1}\overline {{z_1}}  - {z_2}\overline {{z_2}} } \right) = 0 \Leftrightarrow \left| {{z_1}} \right| = \left| {{z_2}} \right|\).



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay