Câu 4.47 trang 184 sách bài tập Giải tích 12 Nâng cao - Cho A, B, C, D là bốn điểm trong mặt phẳ... DeHocTot.com

Câu 4.47 trang 184 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Cho A, B, C, D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số

\(1 + 2i\),         \(1 + \sqrt 3  + i\),            \(1 + \sqrt 3  - i\),        \(1 - 2i\)

Chứng minh rằng ABCD là một tứ giác nội tiếp đường tròn. Hỏi tâm đường tròn đó biểu diễn số phức nào ?

Giải

Vì mỗi cặp số \(1 + 2i\), \(1 - 2i\) và \(1 + \sqrt 3  + i\), \(1 + \sqrt 3  - i\) là cặp số phức liên hợp nên hai điểm A, D, hai điểm B, C đối xứng qua \(Ox\); phần thực của hai số đầu khác phần thực của hai số sau nên ABCD là một hình thang cân , do đó nó là một tứ giác nội tiếp đường tròn có tâm J nằm trên trục đối xứng \(Ox\); J biểu diễn số thực \(x\) sao cho \(\left| {\overrightarrow {JA} } \right| = \overrightarrow {\left| {JB} \right|}  \Leftrightarrow \left| {1 - x + 2i} \right| = \left| {1 - x + \sqrt 3  + i} \right|\). Từ đó suy ra  \(x\) = 1.

(Cách khác : \(\overrightarrow {AB} \) biểu diễn số phức \( \sqrt 3  - i\), \(\overrightarrow {DB} \) biểu diễn số phức \(\sqrt 3  + 3i\) mà \({{\sqrt 3  + 3i} \over {\sqrt 3  - i}} = \sqrt 3 i\) nên \(\overrightarrow {AB} \overrightarrow {.DB}  = 0\). Tương tự (hay vì lí do đối xứng qua \(Ox\)), \(\overrightarrow {DC} .\overrightarrow {AC}  = 0\). Từ đó suy ra AD là một đường kính của đường tròn đi qua A, B, C, D . ( h.4.13)

      

 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay