Câu 4.6 trang 177 sách bài tập Giải tích 12 Nâng cao - ... DeHocTot.com

Câu 4.6 trang 177 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Gọi M, M’ theo thứ tự là các điểm của mặt phẳng phức biểu diễn số \(z \ne 0\)  và \(z' = {{1 + i} \over 2}z\). Chứng minh rằng tam giác OMM’ là tam giác vuông cân (O là gốc tọa độ)

Giải

Ta có \(\left| {\overline {OM} } \right| = \left| z \right|,\)

\(\eqalign{& \left| {\overline {OM'} } \right| = \left| {{{1 + i} \over 2}} \right|\left| z \right| = {{\sqrt 2 } \over 2}\left| z \right|  \cr & \left| {\overline {MM'} } \right| = \left| {\overline {OM'}  - \overline {OM} } \right| = \left| {{{ - 1 + i} \over 2}} \right|\left| z \right| = {{\sqrt 2 } \over 2}\left| z \right| \cr} \)

Do \(\left| z \right| \ne 0,\) suy ra tam giác OMM’ là tam giác vuông cân đỉnh M’ (h.4.5)

                                            

 



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay