Câu 4.7 trang 177 sách bài tập Giải tích 12 Nâng cao - Cho A, B là hai điểm trong mặt phẳng phứ... DeHocTot.com

Câu 4.7 trang 177 sách bài tập Giải tích 12 Nâng cao

Toán nâng cao


Cho A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn các số phức \({z_0},{z_1}\) khác 0 thảo mãn đẳng thức \(z_0^2 + z_1^2 = {z_0}{z_1}\). Chứng minh rằng tam giác OAB là tam giác đều (O là gốc tọa độ).

Giải

Ta có:

\(\eqalign{& z_0^2 + z_1^2 = {z_0}{z_1} \Rightarrow {z_0}\left( {{z_1} - {z_0}} \right) = z_1^2 \cr&\Rightarrow \left| {{z_0}} \right|\left| {{z_1} - {z_0}} \right| = {\left| {{z_1}} \right|^2}  \cr & z_0^2 + z_1^2 = {z_0}{z_1} \Rightarrow {z_1}\left( {{z_0} - {z_1}} \right) = z_0^2 \cr&\Rightarrow \left| {{z_1}} \right|\left| {{z_1} - {z_0}} \right| = {\left| {{z_0}} \right|^2} \cr} \)

 

Vậy   \(\left| {{z_1} - {z_0}} \right| = {{{{\left| {{z_1}} \right|}^2}} \over {\left| {{z_0}} \right|}} = {{{{\left| {{z_0}} \right|}^2}} \over {\left| {{z_1}} \right|}},\) suy ra \({\left| {{z_0}} \right|^3} = {\left| {{z_1}} \right|^3}\)

Do đó \(\left| {{z_0}} \right| = \left| {{z_1}} \right| = \left| {{z_1} - {z_0}} \right|\)  tức là OA = OB = AB (khác 0).

Vậy tam giác OAB là tam giác đều.



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay