Bài 39 trang 124 - Sách giáo khoa toán 7 tập 1 - Bài 39. Trên mỗi hình 105,106,108 các tam gi... DeHocTot.com

Bài 39 trang 124 - Sách giáo khoa toán 7 tập 1

Toán


Bài 39. Trên mỗi hình 105,106,108 các tam giác vuông nào bằng nhau? Vì sao?

Giải:

Hình 105

\(∆ABH\) và \(∆ACH\) có:

+) \(BH=CH\) (gt)

+) \(\widehat{AHB}=\widehat{AHC}\) (góc vuông)

+) \(AH\) là cạnh chung.

vậy \(∆ABH=∆ACH\) (c.g.c)

Hình 106

\(∆DKE\) và \(∆DKF\) có: 

+) \(\widehat{EDK}=\widehat{FDK}\)(gt)

+) \(DK\) là cạnh chung.

+) \(\widehat{DKE}=\widehat{DKF}\) (góc vuông)

Vậy \(∆DKE=∆DKF\) (g.c.g)

Hình 107

Theo định lí tổng ba góc trong một tam giác ta có:

\(\eqalign{
& \widehat {ABD} + \widehat {BDA} + \widehat {DAB} = {180^0} \cr
& \widehat {ACD} + \widehat {CDA} + \widehat {DAC} = {180^0} \cr} \)

Mặt khác ta có: 

\(\eqalign{
& \widehat {DAB} = \widehat {DAC}\,\,\,(gt) \cr
& \widehat {ABD} = \widehat {ACD} = {90^0} \cr} \)

Nên \(\widehat {BDA} = \widehat {CDA}\)

Xét \(∆ABD\) và \(∆ACD\) có:

+) \(\widehat {DAB} = \widehat {DAC}\,\,\,(gt)\)

+) \(AD\) cạnh chung

+) \(\widehat {BDA} = \widehat {CDA}\) (cmt)

\(∆ABD=∆ACD\) (g.c.g)

Hình 108

Theo định lí tổng ba góc trong một tam giác ta có:

\(\eqalign{
& \widehat {ABD} + \widehat {BDA} + \widehat {DAB} = {180^0} \cr 
& \widehat {ACD} + \widehat {CDA} + \widehat {DAC} = {180^0} \cr} \)

Mặt khác ta có: 

\(\eqalign{
& \widehat {DAB} = \widehat {DAC}\,\,\,(gt) \cr 
& \widehat {ABD} = \widehat {ACD} = {90^0} \cr} \)

Nên \(\widehat {BDA} = \widehat {CDA}\)

Xét \(∆ABD\) và \(∆ACD\) có:

+) \(\widehat {DAB} = \widehat {DAC}\,\,\,(gt)\)

+) \(AD\) cạnh chung

+) \(\widehat {BDA} = \widehat {CDA}\) (cmt)

\(∆ABD=∆ACD\) (g.c.g)

 Suy ra: \(BD=CD\) (hai cạnh tương ứng )

             \(AB=AC\) (hai cạnh tương ứng )

Xét \(∆DBE\) và \(∆DCH\) 

+) \( \widehat {EBD} = \widehat {HCD} = {90^0} \) 

+) \(BD=CD\) (cmt)

+) \(\widehat {BDE} = \widehat {CDH}\) (đối đỉnh)

\(∆DBE=∆DCH\) (g.c.g)

Xét  \(∆ABH\)  và \(∆ACE \) 

+) \(\widehat A\) chung

+) \(AB=AC\) (cmt)

+) \(\widehat {ABH} = \widehat {ACE} = {90^0}\)

\(∆ABH=∆ACE \) (g.c.g)



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay