Bài 5 trang 8 sgk toán 7 tập 1 - Giả sử x = \(\frac{a}{m}\) ; y = \(\frac{b}{... DeHocTot.com

Bài 5 trang 8 sgk toán 7 tập 1

Toán


Giả sử x = \(\frac{a}{m}\) ; y = \(\frac{b}{m}\) ( a, b, m ∈ Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\frac{a + b}{2m}\) thì ta có x < z < y

Lời giải:

Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (  a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a + b}{2m}\)

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y

                                                                                                              



de-hoc-tot-logo Học Tốt - Giải Bài Tập Offline


Đã có app HỌC TỐT trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu....miễn phí. Tải ngay ứng dụng trên Android và iOS.


Diệt sạch Virus - Tăng tốc điện thoại - Tải Ngay